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ABSTRACT: Notoamide S has been hypothesized to be a key
biosynthetic intermediate for characteristic metabolites
stephacidin A, notoamide B, and versicolamide B in Aspergillus
sp. but has not yet been isolated. The isolation of notoamide S
and an enantiomeric mixture of 6-epi-stephacidin A enriched
with the (—)-isomer from Aspergillus amoenus is reported. The
presence of (+)-versicolamide B suggests that the fungus
possesses only the oxidase, which converts (+)-6-epi-
stephacidin A into (+)-Versicolamide B, but not for (—)-6-
epi-Stephacidin A.

n our ongoing studies on the notoamide and stephacidin

biosynthesis in two closely related fungi of the genus
Aspergillus, we previously reported that A. protuberus (formerly
Aspergillus sp. MF297-2) produces (+)-stephacidin A, (—)-no-
toamide B, and (+)-versicolamide B"* and that A. amoenus
(formerly A. versicolor NRRL 35600) produces the enantiomers
(—)-stephacidin A and (+)-notoamide B but the same
enantiomer of (+)-versicolamide B as produced in A. protuberus
(Figure 1).> Stephacidin A, notoamide B, and versicolamide B
are prenylated indole alkaloids containing a characteristic
bicyclo[2.2.2]diazaoctane core structure, which is likely to
arise from an intramolecular hetero-Diels—Alder (IMDA)
reaction (Scheme 1). In order to verify the molecular basis
for the biogenesis of metabolites with this unique core
structure, we performed bioconversions of synthetic, isotopi-
cally labeled compounds, i.e., notoamide E,* notoamide S,>°
notoamide T,” 6-epi-notoamide T,” and stephacidin A.*> Among
them, notoamides S and T and 6-epi-notoamide T have not yet
been isolated from the two fungal cultures, although notoamide
S is strongly implicated to undergo the IMDA reaction to afford
notoamide T and its 6-epi isomer through the achiral azadiene
followed by cyclization and rearrangement to afford stephacidin
A, notoamide B, and versicolamide B (Schemes 1 and 2). The
bioconversion of notoamide S in A. amoenus afforded
notoamides C and D, (—)-stephacidin A, (+)-notoamide B,
and (+)-versicolamide B.° Notoamide T was converted into
stephacidin A and notoamide B in both A. protuberus and A.
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Figure 1. Structures of the metabolites produced by A. protuberus
(formerly Aspergillus sp. MF297-2) and A. amoenus (formerly A.
versicolor NRRL 35600).

amoenus,’ and 6-epi-notoamide T was converted to 6-epi-
stephacidin A and versicolamide B in A. protuberus.” These
incorporation experiments of notoamide T and its 6-epi-isomer
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Scheme 1. Proposed Biosynthetic Pathway of Enantiomeric Alkaloids in A. protuberus (Formerly Aspergillus sp. MF297-2) and
A. amoenus (Formerly A. versicolor NRRL 35600)
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were performed with racemic mixtures, and interestingly, the protuberus.” In the present study, we elucidated the absolute
two fungi converted both exogenous as well as endogenous configuration of 6-epi-stephacidin A produced by A. amoenus.
substrates to products. In order to confirm the presence of A. amoenus was cultured on rice medium at 25 °C for one
notoamides S and T and 6-epi-notoamide T as precursors in the month. The culture was extracted with n-BuOH, and the
fungal culture, we previously carefully analyzed the time-course condensed extract was partitioned between n-hexane and 90%
of the metabolic profile in the culture of A. protuberus but could MeOH-H,O. The aqueous MeOH fraction was subjected to
not obtain these metabolites. ODS column chromatography with MeOH/H,O, and fractions

that eluted with 75% MeOH—H,O were repeatedly purified to
Scheme 2. Metabolites Isolated from the Culture of A. afford notoamide S (15.3 mg) and G-epi-stephacidin A (1.22
amoenus and Their Plausible Biosynthetic Pathway” mg).

Notoamide S and 6-epi-stephacidin A were identified by 'H

NMR spectra and ESIMS, and the structures were corroborated

) S by comparison to known, synthetic samples. The CD spectrum
i suggested that the isolated 6-epi-stephacidin A was the
, s (—)-enantiomer. However, from a biosynthetic point of view,
the precursor of (+)-versicolamide B should be (+)-6-epi-
R stephacidin A (Scheme 2). Thus, the isolation of the
y @(} (—)-enantiomer was inconsistent with the proposed biogenetic
. relationship, and the small molar ellipticity of the CD spectrum
suggested the possibility of an enantiomeric mixture. The 6-epi-
Notoamite S wd N stephacidin A we isolated was analyzed by HPLC with a chiral
| 4 column and turned out to be an enantiomeric mixture enriched
c with the (—)-isomer. Purification of the mixture by chiral
HPLC afforded (+)- and (—)-6-epi-stephacidin A in a ratio of
- 1:2.4, and the enantiomers showed the opposite CD spectra
o i (Figure 2). This result suggested that notoamide S was
converted to both (+)- and (—)-6-epi-stephacidin A through

“The compounds in route ¢ are main metabolites. (a) e
Mol. ellips. 0
In the present study, we searched for the presence of these 11000k
metabolites in the culture of A. amoenus and succeeded in the i
isolation of notoamide S but not of notoamide T and its 6-epi- (b) I
isomer. With respect to the metabolic profile of A. protuberus Mol. ellips.  01-
and A. amoenus, production of the enantiomers of stephacidin A J
and notoamide B along with the presence of the same 000 & ' : : -
enantiomer of (+)-versicolamide B are enigmatic. 6-epi-
Stephacidin A is likely the precursor of versicolamide B, and Figure 2. CD spectra of (+)- (a) and (—)-6-¢pi-stephacidin A (b)
(+)-6-epi-stephacidin A was obtained from the culture of A. isolated from the culture of A. amoenus in MeOH.
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Scheme 3. Proposed Mechanisms of IMDA Reactions for Metabolites in A. protuberus (A) and A. amoenus (B)®
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“The compounds in bold squares are main metabolites and those in plain squares are minor metabolites.

(+)- and (—)-6-epi-notoamide T, respectively, and subsequently
only (+)-6-epi-stephacidin A was converted into (+)-versicola-
mide B (Scheme 2). These observations clearly indicate that A.
amoenus contains an indole oxidase that transforms (+)-6-epi-
stephacidin A to (+)-versicolamide B but does not contain a
suitable indole oxidase for (—)-6-epi-stephacidin A. Con-
sequently, (—)-6-epi-stephacidin A becomes a shunt metabolite,
and the fungus does not produce (—)-versicolamide B.
Stephacidin A, notoamide B, and versicolamide B are all
putatively biosynthesized from notoamide S by two-electron
oxidation, tautomerization, and IMDA reaction (Scheme 3). In
A. protuberus, (+)-stephacidin A/(—)-notoamide B and (+)-6-
epi-stephacidin  A/(+)-versicolamide B are exo- and endo-
products, respectively, which are caused by the different
orientation of the dienophile to the diene in pathways a and
b, respectively (Scheme 3 (A)). On the other hand, in A
amoenus, (—)-stephacidin A/(+)-notoamide B and (—)-6-¢pi-
stephacidin A are similarly produced in the pathways ¢ and d,
respectively (Scheme 3 (B)). In addition, the different
orientation of the diene to the dienophile in pathway b’ leads
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to the production of (+)-6-epi-stephacidin A/(+)-versicolamide
B as produced in pathway b. In A. amoenus, pathway b’ is more
likely than pathway b since the positions of the diene and
dienophile in pathway b’ are the same as those in pathways ¢
and d. In both fungi, exo-metabolites stephacidin A and
notoamide B are produced as major metabolites compared to
endo-metabolites 6-epi-stephacidin A and versicolamide B.

In conclusion, we have successfully isolated natural
notoamide S from A. amoenus (formerly A. versicolor NRRL
35600), which was previously bioconverted into the products
containing a bicyclo[2.2.2]diazaoctane core structure, (— ) ste-
phacidin A, (+)-notoamide B, and (+)-versicolamide B.° The
finding of notoamide S in the culture further confirms that it is
a key biosynthetic precursor of these natural products. In this
study, we isolated 6-epi-stephacidin A from A. amoenus as a
nonracemic mixture enriched with the (—)-isomer. With the
presence of the (+)-enantiomer of versicolamide B in the
culture of A. amoenus, this result strongly suggests that the
fungus possesses a highly enantio-discriminating oxidase, which
selectively converts (+)-6-epi-stephacidin A into (+)-versicola-
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mide B but is unreactive toward the (—)-6-epi-stephacidin A
present (Scheme 3 (B)). We have previously reported that the
biosynthetic gene clusters of A. protuberus and A. amoenus are
orthologous with an overall nucleotide identity of 71%.” These
phylogenetically closely related species in Aspergillus section
Versicolores'® have curiously evolved enantiodivergent biosynthetic
pathways to the stephacidins and notoamides but converge on the
production of (+)-versicolamide B. Efforts to clarify the
underlying genetic and biochemical basis for the biogenesis of
these structurally complex alkaloids are under investigation in
our laboratories.
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